MEHMET SOYADIYOK

SAAT

28 Kasım 2012 Çarşamba

Anakartlar

ANAKART



1. ANAKARTLAR

Anakart, bilgisayar parçalarını ve bu parçalar arasında veri iletimini sağlayan yolları üzerinde barındıran elektronik devrelere verilen isimdir.

Anakartlar, çok hassas elektronik devreler olduğu için ani akım yükselmeleri ve gerilim düğmeleri cihaza zarar verebilir.

1.1. Statik (Durgun) Elektrik

Statik elektrik, elektronların atomlar arasındaki hareketi ile oluşan elektrik olarak tanımlanabilir.

1.1.1. Statik Elektrik ve Oluşumu

Elektronlar atomlar arasında hareket ederken bir enerji üretir, bu enerji statik elektriği oluşturur.

İki farklı yükle yüklü malzeme birbirine değdiğinde bir elektron transferi oluşur. Bir tarafta negatif yükler birikirken diğer taraf pozitif yükle yüklenir. Birbirine değen atomlar ayrıldığında ise yüzeyler yüklü kalır. Buna elektrostatik yüklenme denir. Elektrostatik yüklenme her yerde görülebilir. Örneğin, bulutların birbirine değmesi ile yüklenme oluşur.

Yolda yürürken üzerimizde ve giysilerimizde elektrostatik yüklenme oluşur. Birbirine temas eden pek çok ortamda statik elektrik oluşumu gözlenir.

1.1.2. Statik Elektriğin Zararları

Statik elektrik farklı yüklerle yüklü olan cisimlerin birbirine tekrar temas etmesi sonucu ortaya çıkar. Yüklü iki bulutun birbirine teması yıldırımı meydana getirir. Diğer yüklü cisimlerin birbirine temasında da küçük çarpılmalar durumu bazen bir cisme dokunduğunuzda ya da başka biri ile tokalaştığınızda yaşayabilirsiniz. Bu çarpılmanın nedeni dokunulan cisim ya da kişinin sizden zıt yükle yüklü olması ve temas ile bu yüklerin boşalmasıdır.

Statik elektrik görünüşte zarar vermeyecek bir elektrik türü olarak düşünülse de aslında oldukça büyük zararlara neden olabilir. Yüklenme sonrasında temas ile yük boşalmaları endüstri ve ticari alanlarda ciddi zararlara neden olabilmektedir. Yük boşalması Sırasında oluşan ark ve kıvılcımlar yangınlara sebep olabilir. Yine elektronik ve bilgisayar alanında bu yükler cihazların zarar görmesine ve bozulmasına sebep olabilir. Yük boşalması ile cihazları oluşturan parçaların arızalanması ve çalışmaz hâle gelmesi mümkündür.

1.1.3. Statik Elektriğin Zarar Verebileceği Ortamlarda Alınacak Önlemler

Statik elektrik, çeşitli bilgisayar malzemelerine zarar verebilir. Bu zararın önüne
geçebilmek için çeşitli yöntemler mevcuttur. Bunlar aşağıda verilmiştir.

1.1.3.1. Donanım Malzemeleri İçin Alınacak Önlemler

Donanım birimlerinin statik elektriğe karşı korunması için yüklü olma durumlarında yükü boşaltmayı ortadan kaldıracak Şekilde muhafaza edilmeleri ya da yüklenmeye neden olmayacak Şekilde montaj yapılması ve kullanılması gereklidir.

Kasaya ve çalışma alanlarına montajda iletken olmayan montaj vidaları kullanılmalıdır. Parçalar metal olmayan ya da yüklenmelerine engel olacak Şekilde muhafaza edilmelidir. Bunun için antistatik koruma sağlayan ambalajlar ya da özel kaplama malzemeleri satın alma esnasında donanım birimleri ile verilmektedir.

1.1.3.2. Antistatik Çalışma Ortamı Sağlamak

Statik elektrikten korunmak için çalışma alanında topraklama sağlanmalıdır.
Topraklama gerilim altında olmayan bütün tesisat kısımlarının, uygun iletkenlerle toprak içerisine yerleştirilmiş bir iletken cisme (elektrot) bağlanmasıdır. Topraklama sayesinde cihaz üzerindeki kaçak akımlar ve statik elektrik toprağa akacaktır ve böylece elektrik dalgalanmalarından ve statik elektriğin zararlarında korunma sağlanacaktır.

Çalışma ortamında çalıştığımız aletlerin ve kullandığımız malzemelerin yüklenmeye neden olmayacak şekilde kullanılması ve muhafaza edilmesi gereklidir. Araç ve gereçler çok defa bizi yüksek gerilimden koruyacak Şekilde yalıtkan malzeme ile kaplıdır. Çalışma ortamındaki yüklenebilecek cihaz ya da malzemelerin topraklama ile yüklenmesi önlenebilir.

Bunun için yer döşemeleri çalışma masası ya da alanı antistatik malzemeden seçilebilir.
Çalışma esnasında giyilen kıyafetler antistatik ürünler olabilir.

1.1.3.3. Kişisel Antistatik Önlemler

Statik elektrik sürekli hareket hâlinde olduğumuz için biz insanların da yüklenmesine neden olur ve gün boyu pek çok yerde bu yüklenme ve yük boşalmaları ile karşılaşabiliriz. Donanım birimleri ile temas ya da kullanma öncesinde vücuttaki statik yükün boşaltılması önemlidir. Aksi takdirde bu yük çalıştığımız parçalar üzerinden boşalma yapabilir ve bu parçalara zarar verebilir. Bu yükü boşaltmak için çalışma öncesi toprağa temas eden zeminlere dokunarak yükü atabiliriz. Bunun için kalorifer petekleri, su boruları, Çeşme ya da
duvar uygun bir alan teşkil edebilir. Yine çalışma esnasında yüklenme durumuna karşı statik elektrik oluşumunu engelleyen antistatik eldiven kullanılabilir.

1.1.3.4. Manyetik Ortama Karşı Önlemler

Günlük hayatımızda pek çok yerde (elektrik Şebekeleri, aydınlatma, haberleşme ağları, evimizdeki kablolar ve elektrikli aletler vb.) manyetik alanlar oluşmakta ve bizi
etkilemektedir. Bu alanlar insan sağlığı ile ilgili olumsuz etkilere neden olmaktadır. Bu alanların etkilerinden korunmak için manyetik alan oluşan yerlerden mümkün oldukça uzak çalışmak ve durmak gerekir. Yakın olduğumuz zamanlarda ise süreyi mümkün olduğu kadar kısa tutmak iyi olabilir. Bilgisayar başında çok çalışmak, televizyon ve elektronik aletlere yakın durmak, ev içi ve şehir elektrik Şebekelerine çok yakın durmak bizim manyetik alandan etkilenmemize neden olacaktır.

1.2. Anakartlar

Anakart, bir bilgisayarın tüm parçalarını üzerinde barındıran ve bu parçaların
iletişimini sağlayan elektronik devredir.

1.2.1. Anakartın Yapısı ve Çalışması

Anakartlar özel alaşımlı bir blok üzerine yerleştirilmiş ve üzerinde RAM yuvaları genişleme kartı slotları, devreler ve yongalar bulunan ve bütün bu donanım birimlerinin
Mikroişlemci ile iletişimini sağlayan elektronik devredir. Anakart, üzerindeki yonga setleri sayesinde sistem çalışmasını organize eder. Bir nevi tüm birimlerin bir arada ve uyumlu çalışmasını sağlayan bir köprü vazifesi görür.



IBM TARAFINDAN KULLANILAN İLK ANAKART (1982)
Anakart bütün donanımları veya bağlantı noktalarını üzerinde bulundurur. Üzerinde mikroişlemci soketi, RAM slotu, genişleme yuvaları (ISA, PCI, AGP ve PCI-e), BIOS, donanım kartları (dâhilî), veri yolları ve bağlantı noktalarını bulundurur.

Anakart, bilgisayara hangi sistem bileşenlerinin eklenebileceğini ve hızlarının ne olacağını belirleyen temel unsurdur.

Ana kartlarda dikkat edilmesi gereken hususların başında, kullanılmak istenen CPU (işlemci) ile uyumlu bir yonga seti kullanan bir anakart sahibi olmanız gerekliliği gelir. En son işlemci, anakart ve diğer donanım bilgilerine çeşitli bilgisayar dergilerinden faydalanarak ve internette araştırma yaparak ulaşılabilir.

1.2.2. Anakartın Bileşenleri

Anakartlar büyük elektronik devreler olduğu için tek tek elemanları ele almak yerine bölgesel olarak anlatmak yerinde olacaktır.

Aşağıda i7 çekirdek yapısına sahip bir işlemci için üretilmiş bir anakart modeli görülmektedir.
Resim 1.2: Anakart bileşenleri
1.2.2.1. Yonga Seti (Chipset)

Anakart üzerinde yer alan bir dizi işlem denetçileridir. Bu denetçiler anakartın üzerindeki bilgi akış trafiğini denetler. Bilgisayarın kalitesi, özellikleri ve hızı üzerinde en önemli etkiye sahip birkaç bileşenden biridir. Bir yonga seti “North Bridge” (kuzey köprüsü) ve “South Bridge” (güney köprüsü) denen iki yongadan oluşur. Esasen bir anakart üzerinde birden fazla yonga mevcuttur. Ancak kuzey ve güney köprüleri yönetici yongalardır.

Tipik bir kuzey köprüsü yongası temel olarak işlemciden, bellekten, AGP veya PCI ekspres veri yollarından sorumludur ve bunların kontrolüyle bunlar arasındaki veri aktarımını sağlar. Ancak kuzey köprüsü ve güney köprüsü özellikleri üreticiye ve yonga setine göre farklılık gösterebilir ve bu genellemenin dışına çıkabilir. Kuzey köprüsü yongası fonksiyonlarından dolayı işlemciye, bellek ve AGP slotlarına yakın olmalıdır (Sinyalin geçtiği fiziksel yollar ne kadar kısa olursa sinyal o kadar temiz ve hatasız olur.) ve bu yüzden
de anakartın üst kısmına yerleştirilir. Zaten adındaki “kuzey” kelimesi de buradan gelmektedir.

Kuzey
Köprüsü
Güney
Köprüsü
CPU
Hafıza Veriyolu
FSP
AGP Veriyolu
PCI Veriyolu
SATA - ATA Veriyolu
PCI-ex Veriyolu

Güney köprüsü yongası ise giriş-çıkış birimlerinden, güç yönetiminden, PCI veriyolundan ve USB ile anakarta entegre özelliklerden (ses ve ethernet gibi) sorumludur. Adındaki “south” kelimesinin de yine anakarttaki pozisyonundan geldiği kolayca tahmin edilebilir.

Üreticilerin yonga setlerini iki parça hâlinde tasarlamaları anakart tasarımında esneklik sağlar. Örneğin USB 2.0 desteği olmayan bir yonga setine bu desteği eklemek için bütün yonga setini baştan tasarlamak yerine sadece güney köprüsü yongasında değişiklik yapmak çok daha kolaydır. Ayrıca değişik özelliklerdeki güney köprüsü yongaları kullanılarak değişik kullanıcı gruplarına hitap etmek mümkün olur ve böylece
Kullanmayacağınız özellikler için boşuna para vermek zorunda kalmamış olursunuz.

Chipset çeĢitleri:

Günümüzde birçok yonga seti üreten firma mevcuttur. Çalışma ve kullanım amaçlarına göre birçok çeşitlilikte yonga seti üretimi yapılmaktadır. Firmaların ürettikleri bu yonga setleri anakartların performansını ve maliyetini etkileyen önemli unsurlardandır.
Anakartların kullanım alanı ve kalitelerine göre kullanılacak olan yonga setlerinin uygun özelliklerde ve kalitede olması beklenir.

Anakart üzerindeki bileşenlerin birbiriyle veri alışverişini sağlayan yollardır.
Dışarıdan bağlanan donanımlarda ise veri yolları uçlarında bulunan slotlar sayesinde bilgi alışverişi sağlamaktadır.

Bant Genişliği: iletişim kanalının kapasitesini belirler. Birim zamanda aktarılabilecek veri miktarıdır. Bant genişliği ne kadar büyükse belli bir sürede aktarılabilecek veri miktarı da o kadar büyük olur.

ISA (Industry Standart Architecture)
Eski bir slottur ve 8–16 bit veri yoluna sahiptir. Bant genişliği çok düşük olduğundan günümüz anakartlarında kullanılmamaktadır. 1981’de üretilen kişisel bilgisayarlarda kullanılmıştır, bir standardı tanımlar. Veri yolu önceleri 8 bit, daha sonra 16 bit’e çıkarıldı. Adres yolu 24 bittir. Hızı 8.33 Mhz (mega hertz)’dir. Tak ve çalıştır özelliği yoktur.
Tak-çalıştır (Plug and play): Genellikle bilgisayarlarda, sisteme bağlı olan bir donanımın herhangi bir ayarlamaya ihtiyaç olmaksızın donanımın sürücüsünün otomatik olarak sisteme yüklenmesi anlamında kullanılan terimdir. Genellikle bilgisayarların USB portunu kullanan cihazlar için kullanılır.

Resim 1.4: ISA Slotu
PCI (Peripheral Component Interconnect)

Bu veriyolu 64 bitlik olup 1993 yılında geliştirilmiştir. Uyumluluk problemleri nedeniyle uygulamada 32 bit olarak kullanılmaktadır. 33 veya 66 MHz saat hızlarında çalıĢır. 32 bit 33 MHz hızında çalışan PCI veriyolunun kapasitesi 133MB/sn. (mega bayt / saniye)dir. PCI veriyolu tak-çalıştır desteklidir. PCI slotları beyaz renkli olup modem, ses kartı, ağ kartı, TV kartı gibi donanım kartlarının takılması sebebiyle diğer slotlara oranla sayısı fazladır. Onboard (tümleşik) teknolojisinin geliştirilmesiyle PCI slotlarına bağlanacak donanım kartları sayısı azalmıştır.

AGP (Accelerated graphics port – Hızlandırılmış grafik portu)
533 MHz veri yolu hızına çıkabilen AGP veri yolu sadece ekran kartlarının takılacağı
yuva olarak anakartlarda bulunur. AGP kanalı 32 bit genişliğindedir ve 66 MHz hızında çalışır. Yani toplam bant genişliği 266 MB/sn.dir. Ayrıca özel bir sinyalleşme metoduyla aynı saat hızında 2, 4 ve 8 katı daha hızlı veri akışının sağlanabildiği 2xAGP, 4xAGP ve 8xAGP modları vardır. 2xAGP'de veri akış hızı 533 MB/sn. olmaktadır.

Bilgisayarda çalışılan programlar veya oyunlar geliştikçe ihtiyaç duyulan bant genişliği de artmaktadır.


PCI-X

Portlara kasa dışından ulaşılır ve mikrofon gibi kasa dışında bulunması gereken cihazlar bağlanır.
Server platformlarında uzun süredir kullanılan bir veri yoludur. PCI-X standardının amacı PCI slotlarından daha fazla bant genişliği sağlayıp “Gigabit Ethernet” gibi server platformlarında, iletişim kartlarına gerekli bant genişliğini sağlamaktır. PCI Express ile karıştırılmamalıdır. Bu iki teknoloji birbiriyle kesinlikle uyumlu değildir.

PCI-e, güç tüketimini özellikle AGP limitlerini genişleten, sistem belleğini daha efektif kullanarak ekran kartı ve diğer donanım maliyetlerini kısma imkânı veren bir veri yoludur.

PCI Express’in, PCI-e 1.1 ve PCI-e 2.0 olmak üzere 2 spesifikasyonu vardır. PCI-e 1.1'de hat başına hız 250 MB/s olarak verilirken, PCI-e 2.0 bunu 500 MB/s düzeyine çıkartır.
Böylece ekran kartları için kullanılan PCI-e x16 bağlantılarında PCI-e 1.1’te toplam 4000
MB/s, PCI-e 2.0 ise 8000 MB/s verir.
Normalde PCI-e 1.1 için aktarım hızı hat başına "2.5 Giga-Transfers/second" denir.
Bu değer saniyede aktarılan bit sayısıdır. Normal koşullar altında kaç MB aktarıldığını görmek için bit sayısını sekize bölmeliydik ancak PCI-e 8b/10b adı verilen bir kodlamayı kullanır. Yani PCI-e'nin fiziksel iletim katmanında her bayt, teknik nedenlerle 10 bitlik gruplar hâlinde iletilir. 8b/10b kodlamasından kaynaklanan % 20'lik farkı hesaba kattığımızda, iletilebilecek en yüksek ham veri miktarını hat başına 250 MB/s olarak buluruz. PCI-e 2.0 için de hat başına 500 MB/s sayısını elde ederiz.

PCI-e'nin diğer yenilikleri arasında dinamik bağlantı hızı yönetimi, bağlantı bant genişliği notifikasyonu gibi özelliklerin yanında, güç sınırı tanımlama olanağı da bulunuyor.
Bu sonuncusu ile daha yüksek güç ihtiyacı olan kartlar için kart yuvasının güç limiti düzenlenebiliyor.

PCI-e 2.0, PCI-e 1.1 ile geriye doğru uyumlu olacak Şekilde tasarlanıyor; yani PCI-e 2.0 destekli bir yonga üzerine kurulu anakart satın aldığınızda, eski PCI-e 1.1 ekran kartınız
yeni anakartınızda çalışmaya devam edecek.

Geriye uyumluluğu biraz daha açalım.

PCI-e 1.1 ekran kartıyla PCI-e 2.0 yuvalı anakart: Çalışacak, ancak bir tanesi PCI-e 1.1 olduğu için ara bağlantı PCI-e 1.1 hızında olacak.
PCI-e 2.0 ekran kartıyla PCI-e 1.1 yuvalı anakart: Yeni alacağınız PCI-e 2.0 ekran kartı, eski anakartınızla çalışacak ancak aynı Şekilde bir tanesi PCI-e 1.1 olduğundan ara bağlantı yine PCI-e 1.1 hızında olacak.
PCI-e 2.0 ekran kartıyla PCI-e 2.0 yuvalı anakart: Ancak bu durumda PCI-e 2.0 hızlarında çalışmak mümkün olacak.

1.2.2.3. Portlar ve Konnektörler

Anakart ile dış birimlerin iletişim kurmasına olanak sağlayan bağlantı noktalarıdır.
Portların bir kısmı kasanın içindedir ve bu portlara hard disk gibi kasa içine monte edilen birimler bağlanır. Bazı portlarda kasa yüzeyinde anakarta monteli Şekilde bulunur. Bu;
Anakart üzerindeki portlar

1. PS/2 portu: Yeşil ve mor renklerde ayrı iki PS/2 portu olan anakartlar da vardır.
Bunlardan yeĢiline fare, mor olanına ise klavye takılır. Buradaki porta ise klavye ve fareden
Her ikisi de takılabilir. Tek olmasının sebebi günümüzde USB klavye ve farelerin daha çok kullanılmasıdır.

2-9. USB 3.0, USB 2.0 Port: Her anakart üreticisi farklı sayıda USB port kullanabilir.
Bu anakarta 6 adet USB 3.0 portu ve 2 adet USB 2.0 portu koyulmuştur. USB cihazların bağlanmasını sağlar.

10. S/PDIF: Sayısal (dijital) ses çıkıĢı sağlayan birimdir. Bu birimle ses analog dönüşümü yapılmadan doğrudan sayısal olarak çıkış birimine gönderilir. Böylece ses analog yerine sayısal gideceğinden seste kayıp olmaz.

Dijital bilgi: Türkçe karşılığı sayısaldır. Bilgisayar dilinde “0” ve “1”lerden oluşan bilgilerdir.

Analog bilgi: Belli sınırlar içinde sürekli olarak değişen elektrik sinyalidir.




S/PDIF Konnektörü
Fireware (IEEE1394 – 6 pin, 4 pin) port: Bilgisayara çevre ürünleri bağlanmasında kullanılan yüksek hızlı ara yüz bağlantısıdır. IEEE 1394 standardına dayalıdır.
Dijital kameralar ve video kaydedici cihazların bilgisayara bağlanıp hızlı veri aktarımı yapmak için geliştirilmiştir.
Fireware KONNEKTÖRÜ
eSATA port: eSATA, haricî SATA anlamında, External SATA demektir. Tek başına yeni bir standarttan ziyade, SATA standardı için "dıĢarıya" bir uzatma olarak
düşünebilirsiniz. eSATA arabiriminin çıkış amacı, bilgisayar dışına koyduğumuz haricî diskler için sağlıklı ve hızlı bir bağlantı kurmak. ġu anda haricî depolama için yaygın olarak
Kullanılan Hi-Speed USB ve Firewire 400 (IEEE 1394b) gibi arabirimlerin özellikle performans tarafındaki kısıtlamalarından kurtulurken uygulamada da kolaylık sağlıyor.
Aşağıdaki tabloda saf aktarım rakamlarını görüyorsunuz.

Arabirim
Max. aktarım hızı
Kablo uzunluğu
Firewire 400
50 MB/s
4.5 metre
Hi-Speed USB
60 MB/s
5 metre
SATA I/II/III
150/300/600 MB/s
1 metre
eSATA
600 MB/s
2metre

eSATA KONNEKTÖRÜ
. LAN (RJ-45) portu: Yerel ağ ve internete bağlanmak için kullanılır.

RJ-45 KONNEKTÖRÜ

Ses giriş ve çıkışı: Kulaklık ve 5+1, 7+1 gibi ses sistemleri takmak için kullanılır.

Floppy bağlantısı: Disket sürücüsünün anakarta bağlanması için kullanılır. Son derece yavaş ve sınırlı kapasiteye sahip olması nedeniyle günümüz anakartlarında bu slotlar kullanılmamaktadır.

IDE (integrated drive elektronics) bağlantısı: Harddisk, CD-ROM, CD-Writter,
DVD-ROM, DVD-Writter gibi sürücülerinin anakarta bağlanması için kullanılır.

SATA bağlantısı: Serial ATA (SATA) birimi ise günümüzde depolama birimleri için en çok kullanılan ara yüzdür. SATA kabloları IDE kablolara göre çok daha incedir.

ATX güç konnektörleri: Anakartın tüm işlevleri yerine getirebilmesi için güç kaynağının anakarta bağlanmasını sağlayan konnektörlerdir.
Ön panel bağlantıları: Bilgisayar kasasındaki aç-kapa, reset, led, ve USB bağlantılarının aktif hâle gelmesi için takılması gereken konnektörlerdir.

1.2.3. Anakart ÇeĢitleri

Anakart üreticilerinin uyması gereken bazı standartlar vardır. Bu standartlara göre anakart boyutları, üzerindeki portların, soketlerin, slotların, panel bağlantı noktalarının ve
vidalarının yerleri belirlenmiştir. Bu sayede anakartın kasaya montajı ve donanım kartları eklenmesi sırasında sorun yaşanmamaktadır. Anakartlar aşağıdaki formlara göre üretilir.




XT anakartlar
AT anakartlar
ATX anakartlar

XT Anakartlar
İlk kişisel bilgisayarlarda kullanılan anakartlardır. Bu anakartlar 8086 ve 8088 mikroişlemciler için üretilmiş olup bu işlemciler üzerinde sabit olarak sunulmaktaydı. Bu durumda işlemcinin değiştirilmesi için anakartın değiştirilmesi gerekiyordu. Bu anakartlarda ek donanım birimlerinin 8 bit olması gerekiyordu.

AT Anakartlar
XT anakartlardan sonra 1982 yılından itibaren kullanılmaya başlamış ve günümüz ATX anakartlarına benzer anakartlardır. ISA, PCI ve AGP veri yollarını desteklemektedir. PS/2 desteği yoktur. 5V ve 12 V güç desteği sunar. İşlemcinin değiştirilebilmesi için uygun
olarak üretilmiştir.

ATX Anakartlar
AT anakartlardan sonra üretilmeye bağlanan ve önceki anakartlara göre daha fazla giriş çıkış desteği sunan anakartlardır. Bu anakartlar ile birlikte diğer donanım birimleri tümleĢik özelliklerde anakart üzerinde kullanılmaya başlanmıştır. Donanım birimlerinin montajı için daha esnek ve kullanışlı tasarımları ile dikkat çeken bu Anakartlar günümüzde en çok kullanılan anakartlardır. BIOS güncellemeleri ve güç yönetimi konusunda diğer anakartlara göre çok daha gelişmiş seçenekler sunmaktadır. ATX anakartların micro-ATX olarak küçük boyutlu kasalar için üretilen çeşitleri de mevcuttur.

Günümüzde en çok kullanılan anakart formları ATX ve mikro ATX standartlarıdır.
Ancak gelişen teknoloji ve donanım birimlerindeki değişmeler neticesinde BTX adı verilen yeni nesil anakartların üretimine başlanmıştır. BTX anakartlar ile sistemin güç yönetimi ve soğutması ön plana çıkmış donanım birimlerinin yerleşiminde önemli değişiklikler meydana gelmiştir.

Anakart Kullanım Kılavuzu

Anakartların üzerindeki bileşenleri, anakartta kullanılan biosun özelliklerini anlatan ve bilgi veren kitapçıklara anakart kullanım kılavuzu denir. Kullanım kılavuzları anakart satın alındığında yanında verilmektedir.

Kılavuzda anakart montajının nasıl yapılacağı, işlemcinin ve bellek birimlerinin nasıl monte edileceği, jumper ayarları, led ve kablo bağlantılarının nasıl yapılacağı belirtilir.
Ayrıca anakart biosunda yapılabilecek işlemler ve bios temel ayarlarının anlatımı bu kılavuzda bulunmaktadır. Çoğunlukla anakart kılavuzu ile anakartın sürücülerini ve yazılımlarını içeren bir cd verilmektedir. Bu cd içerisinde sistem kurulumlarından sonra anakart bileşenlerini tanıtan sürücü dosyaları, bios güncellemeleri ya da anakart için uygun programları içeren yazılımlar ve anakart ile ilgili resim ve video dosyaları bulunur.

Hiç yorum yok:

Yorum Gönder